
Environmental Health Perspectives • volume 119 | number 4 | April 2011 487

Research

Assessing the overall impact of cumulative air 
pollution programs on environmental pub-
lic health is a daunting task. Air quality has 
improved substantially in the United States in 
recent decades, in large part because of increas-
ingly stringent federal and state air quality 
regulations. Although many studies have 
documented links between better air qual-
ity and improvements in a variety of human 
health metrics (Clancy et al. 2002; Friedman 
et al. 2001; Hedley et al. 2002; Heinrich et al. 
2002; Pope 1989; Pope et al. 2009), direct 
evidence concerning the extent to which spe-
cific control measures have improved health is 
lacking. This lack of evidence is due in part to 
inherent difficulties in environmental health 
research concerning effects of relatively low-
level exposures on multifactorial health out-
comes with long latency periods that often 
are associated with small changes in relative 
risk (RR). In addition, complex interactions 
between interventions over time make it diffi-
cult to isolate the environmental health effects 
of any one regulation.

No single study or study design is likely to 
characterize the entire range of public health 

improvements attributable to an air quality 
regulation (Health Effects Institute 2003). 
Although the study of the impact of cumula-
tive air pollution control programs on environ-
mental public health is fairly unique compared 
with those involving individual programs, 
and formal research approaches are still in 
early phases of development, several recently 
published research studies have contributed 
relevant insights by taking advantage of epi-
sodic, one-time events or natural experiments 
such as a coal ban (Clancy et al. 2002), traffic 
reductions (Friedman et al. 2001; Tonne et al. 
2008), and closure of a steel mill (Parker et al. 
2008; Pope 1989). Burnett et al. (2005) pro-
posed a “measure of progress” equivalent to the 
percent reduction in the RR of adverse health 
outcomes attributable to reductions in ambient 
air pollutant concentrations. They note that 
their proposed approach is applicable to single 
and multiple cities, as well as single and mul-
tiple pollutants. However, they demonstrate 
their approach only with time-series data on 
mortality associated with ambient nitrogen 
dioxide (NO2) concentrations from 1981 to 
1999 in multiple Canadian cities. Jerrett et al. 

(2007) pointed out that evidence of short-
term health improvements based on studies 
of “natural experiments” and well-delineated 
interventions may not apply directly to effects 
of gradual air quality improvements over many 
years, and when the follow-up period is long, 
many other factors, such as random error 
and systematic biases, especially for low RRs 
(< 1.05), can obfuscate the linkage of air qual-
ity improvements to health benefits. Thus, it 
is important to determine a priori which pol-
lutant–outcome relationships are most likely 
to result in observable impacts on health in a 
particular population given projected changes 
in air pollutant concentrations and estimated 
risks associated with exposures of concern. Of 
course, even when benefits are not statistically 
detectable based on observational data, it is 
helpful to decision makers to know the cir-
cumstances in which health benefits of pollu-
tion reductions are expected to occur.

This challenge was recently addressed by 
Pope et al. (2009) for ambient particulate 
matter (PM). They used an ecological ana-
lytic approach whereby they examined associa-
tions between noticeable changes in ambient 
PM levels and differences in life expectancy 
estimates [~ 0.61 years per 10-μg/m3 decrease 
in PM ≤ 2.5 μm in aerodynamic diameter 
(PM2.5)] across multiple metropolitan areas 
in the United States between 1980 and 2000 
using multiple regression models adjusted for 
socioeconomic status, demographic character-
istics, and smoking. The models were similar 
in structure to those previously used in a cross-
sectional analysis of air pollution effects on 
mortality by Özkaynak and Thurston (1987). 
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Background: New approaches to link health surveillance data with environmental and population 
exposure information are needed to examine the health benefits of risk management decisions.

oBjective: We examined the feasibility of conducting a local assessment of the public health 
impacts of cumulative air pollution reduction activities from federal, state, local, and voluntary 
actions in the City of New Haven, Connecticut (USA).

Methods: Using a hybrid modeling approach that combines regional and local-scale air quality 
data, we estimated ambient concentrations for multiple air pollutants [e.g., PM2.5 (particulate mat-
ter ≤ 2.5 μm in aerodynamic diameter), NOx (nitrogen oxides)] for baseline year 2001 and projected 
emissions for 2010, 2020, and 2030. We assessed the feasibility of detecting health improvements 
in relation to reductions in air pollution for 26 different pollutant–health outcome linkages using 
both sample size and exploratory epidemiological simulations to further inform decision-making 
needs.

results: Model projections suggested decreases (~ 10–60%) in pollutant concentrations, mainly 
attributable to decreases in pollutants from local sources between 2001 and 2010. Models indi-
cated considerable spatial variability in the concentrations of most pollutants. Sample size analyses 
supported the feasibility of identifying linkages between reductions in NOx and improvements in 
all-cause mortality, prevalence of asthma in children and adults, and cardiovascular and respiratory 
hospitalizations.

conclusion: Substantial reductions in air pollution (e.g., ~ 60% for NOx) are needed to detect 
health impacts of environmental actions using traditional epidemiological study designs in small 
communities like New Haven. In contrast, exploratory epidemiological simulations suggest that it 
may be possible to demonstrate the health impacts of PM reductions by predicting intraurban pol-
lution gradients within New Haven using coupled models.
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This approach can be applied at a much smaller 
geographical or urban scale if the necessary 
health, air pollution, demographic, and other 
explanatory data can be accessed or estimated 
at fine-scale spatial resolution. In the present 
study, we used both conventional sample-size–
based approaches and the strategy presented 
by Pope et al. (2009) to assess the feasibility of 
conducting a study on the impact that cumula-
tive air pollution reduction programs may have 
on environmental public health within a small 
geographic area, New Haven, Connecticut 
(USA). We then evaluated the strengths and 
limitations of these approaches in the context 
of urban scale assessments. We chose New 
Haven for this assessment because it was des-
ignated as one of two Connecticut counties 
in nonattainment of the PM2.5 standard in 
1997 [U.S. Environmental Protection Agency 
(EPA) 2010], and because a variety of air pol-
lution reduction activities have subsequently 
been implemented at multiple jurisdiction lev-
els by various federal, state, local, and volun-
tary actions, including the CARE (Community 
Action for a Renewed Environment) program 
(U.S. EPA 2011). National and regional initia-
tives have resulted in large reductions in ambi-
ent nitrogen oxides (NOx) from mobile sources 
in New Haven, and the Northeast region also 
adopted more stringent vehicle emission stan-
dards earlier than did other parts of the United 
States and had faster fleet turnover. In addi-
tion, New Haven has implemented a number 
of voluntary air pollution reduction activities 
such as promoting smoke-free homes, use of 
ultra-low-sulfur diesel fuel, school bus retrofits, 
solvent reduction workshops, and Tools for 
Schools (City of New Haven 2004).

Materials and Methods
The New Haven Study Area is centered in the 
City of New Haven, Connecticut (population 
~ 127,000), and extends to a 20-km radius, 
encompassing 318 census block groups in 
New Haven County with an estimated popu-
lation in 2007 of more than 367,000 people. 
The City of New Haven is located on the 
southern coast of Connecticut on New Haven 
Harbor, which is fed by three rivers (the West, 
Mill, and Quinnipiac) that discharge into 
northern Long Island Sound. New Haven lies 
at the intersection of interstates I-91 and I-95, 
both major regional expressways that are often 
congested. In addition, several surface arteries 
pass through or around New Haven, includ-
ing Routes 1, 10, 17, 34, and 63. Seaborne 
traffic passes through the Port of New Haven, 
a deep-water seaport that attracts a consider-
able number of barges and associated truck 
and rail traffic. In addition to several insti-
tutional power plants, one power generation 
facility serves the community. This wide range 
of emission source categories allows for testing 
of multipollutant emission control strategies.

We evaluated the overall feasibility of 
assessing the public health impact of air pol-
lution reduction programs in the City of New 
Haven by linking projected emissions reduc-
tions from overall regulatory actions to esti-
mated detectable health outcome changes. 
We began by identifying pollutants of interest 
for New Haven based on the local emissions 
inventory for the baseline year of 2001 (Weil 
2004) and criteria air pollutants. For the pres-
ent study, we focused on two air pollutants: 
NOx and PM2.5. We also identified health out-
comes that have been associated with these 
pollutants: cardiovascular disease hospitaliza-
tion and mortality; respiratory disease hospi-
talization and mortality; chronic obstructive 
pulmonary disease mortality and hospitaliza-
tion; and asthma prevalence, diagnosis, and 
hospitalization.

We then evaluated existing data on ambi-
ent level air pollution, emission data, per-
sonal exposure data, and health outcome 
data for the New Haven area. As part of this 
data inventory evaluation, we assessed the 
relevance and completeness of data, as well 
as verification of locations and quantities of 
emissions from local sources. We then gener-
ated emission estimates for NOx and PM2.5 
based on local emissions sources and the pro-
jected impacts of federal, state, and local regu-
latory reduction activities. We also applied 
an improved methodology to predict mobile 
source emissions (Cook et al. 2008).

We first estimated pollutant specific local-
scale air concentrations using the U.S. EPA’s 
AERMOD dispersion model (Cimorelli et al. 
2005). This model used information on local 
emission sources and local meteorological con-
ditions to provide hourly and annual average 
concentrations at multiple locations corre-
sponding to the weighted centroids of each of 
the 318 census block groups in the study area. 
We estimated total NOx and PM2.5 concen-
trations by combining regional background 
levels, chemically reactive pollutant estimates 
from the CMAQ (Community Multiscale Air 
Quality) model, and the AERMOD estimates. 
We estimated emissions using the baseline year 
(2001) emissions rates and projected emissions 
in 2010, 2020, and 2030 based on planned 
and anticipated pollution control programs.

To assess feasibility using a sample size 
approach, we first determined the minimum 
detectable decrease in each outcome relative 
to its baseline incidence rate [tests of two inde-
pendent proportions for a (one-sided) likeli-
hood ratio chi-square test with an α of 0.05 
and power of 0.80] for a study population of 
367,173 (i.e., the 2007 Census estimate for the 
New Haven population within the 318 block 
groups included in the study area). For some of 
the health outcomes, we made additional study 
area subpopulation calculations for different 
age groups (< 18 years, ≥ 18 years).

There is general consensus that RRs asso-
ciated with air pollution exposure for a wide 
variety of health outcomes are typically less 
than 1.50, and usually within the range of 
1.01–1.20, often for a 10-μg/m3 change in 
PM2.5 or an interquartile range change in gas-
eous pollutant concentrations. Jerrett et al. 
(2008) and Wellenius et al. (2005) found 
risk ratios or a RR in this range for NO2. 
RRs for PM2.5 and various outcomes in this 
range were found by Pope et al. (2002) and 
Sheppard et al. (1999), whereas Laden et al. 
(2006) found higher PM2.5 and mortality 
RRs of 1.16–1.28, and Peters et al. (2001) 
found an RR of 1.69 for PM2.5 and acute 
myocardial infarction.

Next we determined the percent reduction 
in exposure that would be required to produce 
a given reduction in the outcome assuming a 
range of possible effect sizes for concentra-
tion–outcome associations. Specifically, we 
considered air pollution RR values of 1.01, 
1.05, 1.10, 1.15, and 1.20 representing the 
increase in outcome (y) associated with an 
incremental increase in a given pollutant 
exposure equal to the level of the average 
value of the ambient pollution concentration 
(c) in the study population. The change in 
the outcome (Δy) associated with a change 
in exposure (Δc) is a function of the baseline 
incidence rate (y) and the risk coefficient (β) 
for a one-unit increase in exposure:

 Δy = y[eβΔc – 1] [1]

where β = [ln(RR)]/c. The percent decrease 
in exposure (Δcreq) required to produce a par-
ticular reduction in the outcome for a given 
RR is calculated as 

 100ln
ln

c
y y1

RRreq #D
D

=-
-

^

^

h

h
> H . [2]

Values of Δcreq < 100 indicate the percent 
reduction in exposure that would be required 
to produce a specific reduction in the out-
come (Δy) assuming a given RR for the expo-
sure–outcome association. Values of Δcreq 
≥ 100 indicate that the corresponding value 
for Δy is not feasible, because exposure would 
have to be reduced by more than 100% to 
achieve it.

Finally, we combined data on projected 
changes in mean annual ambient concentra-
tions of air pollutants for 2010, 2020, and 
2030 with the information on minimum 
detectable effect estimates and the percent 
reduction in exposure required to produce 
a given effect estimate to identify which air 
pollutant–health outcome associations (out 
of 26 possible combinations) would be most 
feasible for assessment.

For pollutants such as PM where projected 
reductions were relatively modest (~ 8%), we 



Health impacts of local air pollution reduction

Environmental Health Perspectives • volume 119 | number 4 | April 2011 489

used an exploratory epidemiological method-
ology similar to that presented in Pope et al. 
(2009). Specifically, we used the simulated 
health data at census block group level (derived 
from county-specific health data and census 
information on demographics) to evaluate dif-
ferent strategies for demonstrating impacts of 
relatively small changes in ambient pollution 
(compared to NOx) over multiple years.

The outcomes for this analysis were the 
differences between the number of hospital-
izations for 2001 and 2010, as illustrated by 
Equation 3:

 ΔHC = (H2010 – H2001)C, [3]

where ΔHC is the change in the number of 
hospitalizations at census block group C and 
H2010 and H2001 are the number of hospitaliza-
tions for the years 2010 and 2001, respectively.

We calculated the number of hospitaliza-
tions due to congestive heart disease [CHD; 
International Classification of Diseases, 9th 
Revision, Clinical Modification (ICD-9CM; 
World Health Organization 2004), code 428] 
and asthma (ICD-9CM, code 493) for each 
census block group for the years 2010 and 
2001. We chose these end points based on sig-
nificant associations (1.28% increase in risk per 
10-μg/m3 increase in same-day PM2.5) reported 
by Dominici et al. (2006) between PM and 

CHD hospitalizations for the Medicare cohort. 
We restricted hospitalizations due to CHD to 
the population > 65 years of age, and we calcu-
lated asthma hospitalizations separately for all 
ages and for the population < 25 years of age, 
because of known age- dependent differences 
[Connecticut Department of Public Health 
(CDPH) 2007]. We calculated the number of 
hospitalizations for the years 2001 and 2010 as

H

Rate Pop Rate Pop
C

C FR
i R

C MR# #

=

+
=

,^ ^h h/  [4]

where Hc is the number of hospitalizations for 
census block group C, Rate is the rate of hos-
pitalization for females (F) and males (M) of 
race R (white, Hispanic, black), and PopC is 
the population of each subgroup (e.g., white 
female, black male, etc.).

We used 2000 U.S. Census Bureau (2001) 
data to estimate the size of each population 
subgroup in 2001. We used county-level 
population projections for 2010 to estimate 
the proportional change in each population 
subgroup from 2000 to 2010 and applied this 
to the 2000 census block group population to 
estimate 2010 census block populations for 
each subgroup.

Hospitalization rates for both outcomes 
are available for all of New Haven County for 

2001 (CDPH 2001) and 2007 (CDPH 2007), 
and we used 2007 data for 2010 hospitaliza-
tions. The rates are broken down by age and 
sex, and age and race, but not by age, sex, and 
race. We therefore assumed constant ratios of 
rates of hospitalizations for males and females 
for all races. We calculated hospitalization 
rates according to sex, race, age (> 65 years 
of age for CHD, all ages, and < 25 years of 
age for asthma), health outcome (CHD or 
asthma), and year (2001 or 2010) as

F
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/

FR

M MR FR

R MR FR
#

=

+

+

^

^

h

h . [5]

For example, RateFR is the county-level 
hospitalization for females of race R; RateR is 
the county-level hospitalization rate for race 
R; Ratio of ratesM/F is the ratio of hospitaliza-
tion rates between males and females; and 
PopFR and PopMR are county-level population 
sizes for females and males of race R, respec-
tively. We then calculated RateMR by multi-
plying RateFR by Ratio of ratesM/F.

Reductions of PM2.5 at each census block 
group were then regressed against the changes 
in hospitalizations from 2001 to 2010 at each 
census block group. All regression analyses 
were performed using SAS (version 9.1; SAS 
Institute Inc., Cary, NC).

Figure 1. Maps of modeled PM2.5 and NOx concentrations for 2001 (baseline), 2010, 2020, and 2030.
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Our analysis indirectly accounted for the 
effects due to changes in key ethnic/racial 
demographic profile by using group or sex 
relevant hospitalization rates as part of the 
health data and feasibility simulations. We 
explored the influence of introducing an 
additional explanatory variable in our health 
effects regressions to indirectly account for 
both neighborhood effects and the missing 
determinants of observed hospital admis-
sions by computing average admissions either 
within a 3- or 4-km radius around each cen-
sus tract (similarly considered by Özkaynak 
and Thurston 1987).

Results
Air quality modeling. We produced com-
bined CMAQ and AERMOD model results 
for the study area. Model estimates for NOx 
and PM2.5 were consistent with measured Air 
Quality System (AQS) monitoring data for 
the area (Johnson et al. 2010). Figure 1 shows 
maps of modeled PM2.5 and NOx concentra-
tions for the baseline year (2001) and projec-
tions for 2010, 2020, and 2030. PM2.5 maps 
for all four time points show a wide range of 
concentrations in the study area, with high 

concentrations in the city center, near the port 
areas, and near major roadways such as I-95, 
whereas PM2.5 concentrations in suburban 
areas were much lower than in central parts of 
the study area. Finally, PM2.5 concentrations 
are projected to decrease over time, with the 
most pronounced decreases in areas with the 
highest estimated concentrations in 2001.

Spatial patterns in ambient air quality 
concentrations for NOx relates strongly to 
the sources of mobile emissions such as major 
highways. NOx concentrations shown here 
depict strong spatial gradients because many 
of the locations for which we estimated con-
centrations (population-weighted centroids of 
the 318 census block groups) are near major 
roadways. Thus, contrasts between those areas 
and suburban areas are very pronounced. 
Finally, NOx concentrations are also projected 
to decrease considerably over time, particu-
larly in locations close to roadways, because 
of the implementation of federal emission 
standards for mobile source emissions.

Figure 2 shows distributions of annual 
and daily average modeled PM2.5 and NOx 
concentrations for the baseline model year 
2001 and projections (2010, 2020, and 

2030). We sorted the annual average concen-
trations for 2001 in order to group the 318 
study area locations (census block groups) for 
which we divided estimates into three groups 
according to average pollutant concentrations 
at baseline: low (locations in the lowest 25% 
of the distribution), medium (locations in the 
2nd and 3rd quartiles), and high (locations 
in the highest quartile of the distribution). 
As expected, daily averages are more variable 
than annual averages for both PM2.5 and 
NOx, which indicates the importance of tem-
poral variability in pollutant concentrations. 
Downward trends in PM2.5 concentrations 
were evident for areas with medium and high 
concentrations, but not for low-concentration 
areas. Declines in NOx concentrations were 
evident over time for all three groups, but 
the decrease was also much sharper in the 
high-concentration areas. The models pre-
dicted large percentage decreases for NOx 
between 2001 and 2010 (61%) and with less 
pronounced decreases from 2001 to 2020 
and 2030 (overall decreases of 78% and 81%, 
respectively). For PM2.5 the models predicted 
smaller percentage decreases from 2001 to 
2010 (8%), 2020 (9%), and 2030 (9%).

Figure 2. Distributions of annual and daily average modeled PM2.5 and NOx concentrations for the baseline model year 2001 and projections for 2010, 2020, and 
2030. The distributions for the census block groups are classified into three groups according to annual average PM2.5 and NOx concentration distributions in 
2001: low, lowest 25%; medium, interquartile range; high, highest 25%.
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Sample‑size–based feasibility analysis. 
Table 1 exhibits the percent reduction in con-
centrations for a given pollutant that would 
be needed if we assumed a specific RR (1.01, 
1.05, 1.10, 1.15, and 1.20) and an estimated 
reduction in adverse health outcome (2.5%, 
5%, 10%, 15%, and 20%) using the assump-
tions stated above. Table 2 lists the health out-
comes that we explored with corresponding 
minimum statistically detectable decreases in 
each outcome for the New Haven study popu-
lation given the baseline rate of the outcome. 
The New Haven study population area is suf-
ficient in size to examine reductions in adverse 
health outcomes ranging from a low of 2.5% 
(adult asthma prevalence) to a high of 10% 
(all-cause mortality and hospital discharge for 
cardiovascular diseases and respiratory causes).

Based on the percentage decrease air pol-
lution projected for 2010, 2020, and 2030 
within New Haven for NOx (61%, 2010; 
78%, 2020; 81%, 2030) and PM2.5 (8%, 
2010; 9%, 2020 and 2030), the percent 
reduction in air pollution needed to produce 
a given change in the outcome (Table 1), and 
the minimum statistically significant percent 
decrease in each health outcome that can be 
detected in the New Haven study popula-
tion (Table 2), we can assess the feasibility for 
detecting beneficial health effects of air pollu-
tion reductions. Of the 26 different air pollu-
tion–health outcome linkages assessed, only 
five, all NOx related, are potentially feasible 
(Table 2, last column): all-cause mortality, 
cardiovascular disease hospitalization, respira-
tory disease hospitalization discharge, current 

prevalence of asthma in children, and current 
prevalence of asthma in adults.

Simulation‑based epidemiological feasibil‑
ity analysis. The average number of hospitaliza-
tions for CHD among those ≥ 65 years of age 
in each census block group decreased between 
2001 and 2010, whereas average numbers of 
asthma hospitalizations increased (Table 3). 
We were unable to detect associations between 
small reductions in PM2.5 pollution concentra-
tions and health outcomes, so we restricted our 
analysis to census block groups with PM2.5 
reductions of > 4 μg/m3 (n = 30). For these 
census block groups, numbers of CHD hos-
pitalizations were inversely associated with the 
estimated reduction in PM2.5 concentrations, 
indicating that numbers of hospitalizations 
decreased as the reduction in PM2.5 increased 
(p < 0.1; Table 4, Figure 3A). Asthma hospi-
talizations were also inversely associated with 
reductions in PM2.5 concentrations based on 
our simulations, suggesting that greater reduc-
tions in PM2.5 may slow the increase in asthma 
hospitalizations over time (Table 4, Figure 3B). 
However, the inverse association was weaker 
than for CHD hospitalizations. Finally, an 
exploratory analysis we conducted by including 
additional surrogate variables in the regres-
sion models aimed at capturing neighborhood 
effects caused substantial increases in model 
R2 values, whereas the PM2.5 effect estimates 

Table 1. Percent reduction in air pollution needed to reduce the risk of an outcome by 2.5–20% for a 
range of assumed RRs.a

Percent reduction 
in outcome

Assumed RR
1.01 1.05 1.10 1.15 1.20

2.5 > 100 52 27 18 14
5 > 100 > 100 54 37 28
10 > 100 > 100 > 100 75 58
15 > 100 > 100 > 100 > 100 89
20 > 100 > 100 > 100 > 100 > 100
aEstimates based on Equation 2; the percent reduction in outcome corresponds to Δy/y, and the estimated values for 
percent reduction in air pollution required correspond to Δcreq. The Δcreq value ≥ 100% indicates that the corresponding 
value for Δy/y is not feasible, because exposure would have to be reduced by more than 100% to achieve it.

Table 2. Minimum statistically detectable difference in health reduction for a given reference rate and affected population, based on sample size calculations.

Outcome
Reference rate 
(per 100,000) Reference rate source information

New Haven Study 
Area estimated 
2007 population

Minimum statistically 
detectable percent 

decrease
NOx feasibility based 

on sample sizea

All-cause mortality (except injury) 812.9 State of Connecticut, 1999–2006 
(Connecticut age-adjusted rate)b

367,173 10 2020, 2030 (RR ≥ 1.15); 
2010 (RR = 1.20)

Cardiovascular disease
Mortality (ICD-10 codes I00–I87) 316.9 State of Connecticut, 1999–2006 

(Connecticut age-adjusted rate)b
367,173 15 Not feasible

Hospitalization discharge (ICD-9 codes 390–459) 1059.67 County of New Haven, 2006 
(Connecticut age-adjusted rate)c

367,173 10 2020, 2030 (RR ≥ 1.15); 
2010 (RR = 1.20)

Respiratory disease
Mortality (ICD-10 codes J00–J98) 89.5 State of Connecticut, 1999–2006 

(Connecticut age-adjusted rate)b
367,173 20 Not feasible

Hospitalization discharge (ICD-9 codes 460–519) 948.05 County of New Haven, 2006 
(Connecticut age-adjusted rate)c

367,173 10 2020, 2030 (RR ≥ 1.15); 
2010 (RR = 1.20)

Chronic obstructive pulmonary disease and related disorders
Mortality (ICD-10 codes J40–J44) 40.7 State of Connecticut, 1999–2006 

(Connecticut age-adjusted rate)b
367,173 30 Not feasible

Hospitalization discharge (ICD-9 codes 490–496) 266.81 County of New Haven, 2006 
(Connecticut age-adjusted rate)c

367,173 15 Not feasible

Asthma
Current prevalence, adults (≥ 18 years of age) 7,900 County of New Haven, 2006d 283,232 2.5 2010, 2020, 2030 

(RR ≥ 1.05)
Current prevalence, children (< 18 years of age) 8,800 County of New Haven, 2006d 83,941 5 2010, 2020, 2030 

(RR ≥ 1.10)
Hospitalizations (ICD-9 code 493), adults 

(≥ 18 years of age)
314 City of New Haven, 2001–2005e 283,232 15 Not feasible
144 County of New Haven, 2001–2005e 283,232 20 Not feasible

Hospitalizations (ICD-9 code 493), children 
(< 18 years of age)

716 City of New Haven, 2001–2005e 83,941 15 Not feasible
290 County of New Haven, 2001–2005e 83,941 25 Not feasible

ICD-9 (World Health Organization 2004); ICD-10 (World Health Organization 2007).
aBased on Table 1, the minimum statistically detectable percent decrease in this table, and the forecasted reductions in NOx 2010 (61%), 2020 (78%), and 2030 (81%). An air pollutant–
health outcome combination is considered feasible for assessment of air pollution reductions if the reduction in an air pollutant for a given health minimum statistically detectable 
percent decrease is within the range of given RRs. bData from the Centers for Disease Control and Prevention (2009). cData from the CDPH (2006). dConnecticut Behavioral Risk Factor 
Surveillance System, 2006 (see Peng et al. 2008). eOffice of Health Care Access Discharge Database (see Peng et al. 2008). 
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were attenuated somewhat depending on the 
outcome chosen (data not shown).

Discussion
We used detailed information on local health 
and exposure-related data to assess the fea-
sibility of identifying an impact of cumula-
tive air pollution programs on environmental 
public health in New Haven for 26 different 
pollutant–health outcome linkages. Combined 
regional (CMAQ) and local-scale (AERMOD) 
air quality modeling analysis showed a small 
overall decrease for PM2.5 (~ 8–9%) in mean 
pollutant concentrations mostly from local 
sources and between 2001 and 2010; in con-
trast, we projected that NOx would decrease by 
> 60%. Most NOx reductions can be attributed 
to mobile source emission reduction programs. 
Thus, it is important to accurately character-
ize near-road impacts. Local reductions in 
PM2.5 are modest relative to high background 
PM concentrations. Statistical power calcula-
tions suggest that projected decreases in NOx 
may result in statistically significant improve-
ments in health outcomes, including all-cause 

mortality, asthma prevalence in children and 
adults, and cardiovascular and respiratory hos-
pitalizations. For other pollutants with more 
modest reductions, including PM, we deter-
mined the likelihood of performing a success-
ful traditional air pollution reduction–health 
reduction analysis in New Haven to be poor. 
Alternative epidemiological study designs that 
use spatially and temporally resolved air quality 
and exposure models to characterize intraur-
ban gradients were promising based on explor-
atory epidemiological simulations. However, 
health outcomes with low baseline rates would 
have to be strongly associated with air pollu-
tion exposures in order for exposure reduc-
tions to result in identifiable improvements 
and thus would not be ideal for examining risk 
 management decisions.

This study illustrates the advantages of 
using air quality models over traditional epi-
demiological approaches using ambient mea-
surements. For example, central-site data are 
especially problematic for certain PM com-
ponents and species (e.g., elemental carbon, 
organic carbon, coarse and ultrafine PM) that 

exhibit significant spatial heterogeneity. Also, 
for many pollutants (e.g., toxic pollutants), 
ambient monitoring data are often nonexis-
tent or limited. Appropriately verified air qual-
ity models, on the other hand, can provide 
the needed spatial and temporal resolution for 
multiple air pollutant concentrations at many 
locations. These same models can also be used 
to estimate the projected air quality and inputs 
for exposure models for future years, depen-
dent on air pollution reduction activities, or 
due to the addition of new sources in a com-
munity (Isakov et al. 2006). For example, 
this model can address what happens if emis-
sions from some specific stationary or mobile 
sources are reduced by certain amounts and 
what the associated impacts of these local 
controls versus regional controls may be. This 
model application helps determine which 
control options are most effective in reducing 
ambient concentrations.

Both the air quality modeling and feasi-
bility analysis methodologies we used in 
this research have certain shortcomings. For 
instance, despite their advantages of being able 
to provide temporal (hourly) and spatial (at 
hundreds of locations) estimates, and having 
a long history of use by regulatory agencies 
in multipollutant mitigation strategies, mod-
els have uncertainties due to model inputs, 
algorithms, and model parameters (Sax and 
Isakov 2003). Therefore, in order to reduce 
uncertainty due to model inputs, detailed emis-
sions and meteorological information should 
be provided for each model application. In the 
simulation-based epidemiological feasibility 
analyses we considered only single-pollutant 
models and did not include ecological covari-
ates (e.g., income, poverty status, smoking) 
typically used in cross-sectional, ecological 
analysis (Özkaynak and Thurston 1987; Pope 
et al. 2009), because of a lack of complete 
information. Moreover, it is possible that some 
of the covariates may change over time, but 
presumably this may be less of an issue in local-
scale assessments than in national-scale analy-
ses. We did not perform joint optimizations 
with NOx and PM, which could be used to 
examine more complicated alternative study 
designs such as census block groups with low 
reduction levels in NOx but intermediate to 
high reductions in PM. Clearly, accounting for 
multipollutant strategies in future assessments 
will be important in implementing enhanced 
air pollution–health outcome risk management 
studies (Mauderly et al. 2010).

The linkages between air quality and expo-
sure models (e.g., with the Stochastic Human 
Exposure and Dose Simulation Model and 
Hazardous Air Pollution Exposure Model) in 
the context of the New Haven study have been 
examined elsewhere (Isakov et al. 2009). Our 
biggest challenge has been with accessing geo-
graphically and temporally resolved health data 

Table 3. Distribution of estimated changes in CHD and asthma hospitalizations among 318 New Haven 
census block groups, 2001–2010.a

Outcomeb Mean ± SDc Interquartile range Range
CHD hospitalizations for the population ≥ 65 years of age –0.52 ± 0.56 –0.77 to –0.13 –4.11 to 1.07
Asthma hospitalizations for all ages 0.23 ± 0.27 0.04 to 0.31 0.003 to 1.25
Asthma hospitalizations for the population < 24 years 

of age
0.13 ± 0.18 –0.003 to 0.22 –0.03 to 1.20

aHospitalizations in 2010 are represented by 2007 hospitalization data. bNumber of hospitalizations in 2010 minus number 
of hospitalizations in 2001 for each census block group. cNegative values indicate a decrease in the average number of 
hospitalizations across census block groups from 2001 to 2010; positive values, an increase.

Table 4. Associations of predicted reductions in PM2.5 with changes in CHD hospitalizations and in 
asthma hospitalization among 30 New Haven census block groups with > 4-μg/m3 decrease in average 
PM2.5 concentrations, 2001–2010.a

Outcome R 2 β (95% CI)b

Change in CHD hospitalizations among those ≥ 65 years of age 0.08 –0.06 (–0.13 to 0.01)*
Change in asthma hospitalization (all ages) 0.03 –0.04 (–0.11 to 0.02)
Change in asthma hospitalization for children < 24 years of age 0.01 –0.02 (–0.05 to 0.01)

CI, confidence interval.
aHospitalizations in 2010 are represented by 2007 hospitalization data for 30 census block groups with a predicted 
decline in PM2.5 of 4 μg/m3 or more between 2001 and 2010. bLinear regression coefficient (95% confidence interval) for 
the association between hospitalizations and the decline in PM2.5 between 2001 and 2010. *p < 0.1.

Figure 3. Changes in hospitalizations from 2001 to 2010 according to predicted reductions in PM2.5 concen-
trations based on linear regression (with 95% confidence intervals) among 30 census block groups with a 
predicted PM2.5 reduction > 4 μg/m3. (A) CHD hospitalizations among those > 65 years of age. (B) Asthma 
hospitalizations (all ages). Dots represent observed data for individual census block groups.
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in New Haven. Of course, this data gap is often 
a major challenge in other urban areas as well. 
Although there was strong local cooperation 
and local, state, and federal interest in working 
with the project, better research access to locally 
relevant health data should be both facilitated 
and encouraged. Given that the 2010 census 
has recently been collected and the air quality 
modeling for 2010 can be performed soon, 
we hope that the methodology we tested can 
be implemented in the near future using the 
actual 2010 local air quality modeling, census, 
and health data, in order to evaluate the results 
obtained from this feasibility study by using 
better databases and more robust models.

Bolstered by the findings from our study, 
the City of New Haven has been work-
ing to find better solutions for reducing air 
pollution burden and for understanding the 
impacts from air emissions. We presented the 
results from this analysis to the New Haven 
departments of Health, City Planning, and 
Economic Development and to the city chief 
executive officer. These results have been used 
by New Haven in finalizing their negotiations 
to obtain zero emissions from a proposed new 
power plant unit to meet peak demand opera-
tions, which will be achieved through offsets 
by the local power plant company and pro-
posed retrofits of garbage trucks and some port 
operations and additional community benefits. 
Moreover, the city is also evaluating what can 
be done to reduce impacts from port opera-
tions and mitigate exposures at city schools 
located near busy roads and highways, in light 
of the detailed air quality modeling results and 
health risk evaluations presented here.

Conclusions
In this project we successfully applied, com-
pared, and evaluated exposure assessment and 
epidemiological modeling tools in the context 
of observed public health status in a relatively 
small community, New Haven, Connecticut, 
and provided the U.S. EPA and local, state, 
and city organizations with a new modeling-
based methodology to measure the impact 
of collective risk mitigation approaches and 
regulations. Furthermore, because no single 
regulation or program that affects air quality 
can be isolated to track its effect on health, 
this project provided critical findings on how 
regulatory agencies may better examine the 
complex interactions of cumulative impacts 
on air quality and health effects from multiple 
actions in other urban communities.
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